Source code for torch.testing._creation
"""
This module contains tensor creation utilities.
"""
import torch
from typing import Optional, List, Tuple, Union, cast
import math
import collections.abc
# Used by make_tensor for generating complex tensor.
complex_to_corresponding_float_type_map = {torch.complex32: torch.float16,
torch.complex64: torch.float32,
torch.complex128: torch.float64}
float_to_corresponding_complex_type_map = {v: k for k, v in complex_to_corresponding_float_type_map.items()}
[docs]def make_tensor(
*shape: Union[int, torch.Size, List[int], Tuple[int, ...]],
dtype: torch.dtype,
device: Union[str, torch.device],
low: Optional[float] = None,
high: Optional[float] = None,
requires_grad: bool = False,
noncontiguous: bool = False,
exclude_zero: bool = False
) -> torch.Tensor:
r"""Creates a tensor with the given :attr:`shape`, :attr:`device`, and :attr:`dtype`, and filled with
values uniformly drawn from ``[low, high)``.
If :attr:`low` or :attr:`high` are specified and are outside the range of the :attr:`dtype`'s representable
finite values then they are clamped to the lowest or highest representable finite value, respectively.
If ``None``, then the following table describes the default values for :attr:`low` and :attr:`high`,
which depend on :attr:`dtype`.
+---------------------------+------------+----------+
| ``dtype`` | ``low`` | ``high`` |
+===========================+============+==========+
| boolean type | ``0`` | ``2`` |
+---------------------------+------------+----------+
| unsigned integral type | ``0`` | ``10`` |
+---------------------------+------------+----------+
| signed integral types | ``-9`` | ``10`` |
+---------------------------+------------+----------+
| floating types | ``-9`` | ``9`` |
+---------------------------+------------+----------+
| complex types | ``-9`` | ``9`` |
+---------------------------+------------+----------+
Args:
shape (Tuple[int, ...]): Single integer or a sequence of integers defining the shape of the output tensor.
dtype (:class:`torch.dtype`): The data type of the returned tensor.
device (Union[str, torch.device]): The device of the returned tensor.
low (Optional[Number]): Sets the lower limit (inclusive) of the given range. If a number is provided it is
clamped to the least representable finite value of the given dtype. When ``None`` (default),
this value is determined based on the :attr:`dtype` (see the table above). Default: ``None``.
high (Optional[Number]): Sets the upper limit (exclusive) of the given range. If a number is provided it is
clamped to the greatest representable finite value of the given dtype. When ``None`` (default) this value
is determined based on the :attr:`dtype` (see the table above). Default: ``None``.
requires_grad (Optional[bool]): If autograd should record operations on the returned tensor. Default: ``False``.
noncontiguous (Optional[bool]): If `True`, the returned tensor will be noncontiguous. This argument is
ignored if the constructed tensor has fewer than two elements.
exclude_zero (Optional[bool]): If ``True`` then zeros are replaced with the dtype's small positive value
depending on the :attr:`dtype`. For bool and integer types zero is replaced with one. For floating
point types it is replaced with the dtype's smallest positive normal number (the "tiny" value of the
:attr:`dtype`'s :func:`~torch.finfo` object), and for complex types it is replaced with a complex number
whose real and imaginary parts are both the smallest positive normal number representable by the complex
type. Default ``False``.
Raises:
ValueError: if ``requires_grad=True`` is passed for integral `dtype`
ValueError: If ``low > high``.
ValueError: If either :attr:`low` or :attr:`high` is ``nan``.
TypeError: If :attr:`dtype` isn't supported by this function.
Examples:
>>> from torch.testing import make_tensor
>>> # Creates a float tensor with values in [-1, 1)
>>> make_tensor((3,), device='cpu', dtype=torch.float32, low=-1, high=1)
tensor([ 0.1205, 0.2282, -0.6380])
>>> # Creates a bool tensor on CUDA
>>> make_tensor((2, 2), device='cuda', dtype=torch.bool)
tensor([[False, False],
[False, True]], device='cuda:0')
"""
def _modify_low_high(low, high, lowest, highest, default_low, default_high, dtype):
"""
Modifies (and raises ValueError when appropriate) low and high values given by the user (input_low, input_high) if required.
"""
def clamp(a, l, h):
return min(max(a, l), h)
low = low if low is not None else default_low
high = high if high is not None else default_high
# Checks for error cases
if low != low or high != high:
raise ValueError("make_tensor: one of low or high was NaN!")
if low > high:
raise ValueError("make_tensor: low must be weakly less than high!")
low = clamp(low, lowest, highest)
high = clamp(high, lowest, highest)
if dtype in [torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64]:
return math.floor(low), math.ceil(high)
return low, high
if len(shape) == 1 and isinstance(shape[0], collections.abc.Sequence):
shape = shape[0] # type: ignore[assignment]
shape = cast(Tuple[int, ...], tuple(shape))
_integral_types = [torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64]
_floating_types = [torch.float16, torch.bfloat16, torch.float32, torch.float64]
_complex_types = [torch.complex32, torch.complex64, torch.complex128]
if requires_grad and dtype not in _floating_types and dtype not in _complex_types:
raise ValueError("make_tensor: requires_grad must be False for integral dtype")
if dtype is torch.bool:
result = torch.randint(0, 2, shape, device=device, dtype=dtype) # type: ignore[call-overload]
elif dtype is torch.uint8:
ranges = (torch.iinfo(dtype).min, torch.iinfo(dtype).max)
low, high = cast(Tuple[int, int], _modify_low_high(low, high, ranges[0], ranges[1], 0, 10, dtype))
result = torch.randint(low, high, shape, device=device, dtype=dtype) # type: ignore[call-overload]
elif dtype in _integral_types:
ranges = (torch.iinfo(dtype).min, torch.iinfo(dtype).max)
low, high = _modify_low_high(low, high, ranges[0], ranges[1], -9, 10, dtype)
result = torch.randint(low, high, shape, device=device, dtype=dtype) # type: ignore[call-overload]
elif dtype in _floating_types:
ranges_floats = (torch.finfo(dtype).min, torch.finfo(dtype).max)
low, high = _modify_low_high(low, high, ranges_floats[0], ranges_floats[1], -9, 9, dtype)
rand_val = torch.rand(shape, device=device, dtype=dtype)
result = high * rand_val + low * (1 - rand_val)
elif dtype in _complex_types:
float_dtype = complex_to_corresponding_float_type_map[dtype]
ranges_floats = (torch.finfo(float_dtype).min, torch.finfo(float_dtype).max)
low, high = _modify_low_high(low, high, ranges_floats[0], ranges_floats[1], -9, 9, dtype)
real_rand_val = torch.rand(shape, device=device, dtype=float_dtype)
imag_rand_val = torch.rand(shape, device=device, dtype=float_dtype)
real = high * real_rand_val + low * (1 - real_rand_val)
imag = high * imag_rand_val + low * (1 - imag_rand_val)
result = torch.complex(real, imag)
else:
raise TypeError(f"The requested dtype '{dtype}' is not supported by torch.testing.make_tensor()."
" To request support, file an issue at: https://github.com/pytorch/pytorch/issues")
if noncontiguous and result.numel() > 1:
result = torch.repeat_interleave(result, 2, dim=-1)
result = result[..., ::2]
if exclude_zero:
if dtype in _integral_types or dtype is torch.bool:
replace_with = torch.tensor(1, device=device, dtype=dtype)
elif dtype in _floating_types:
replace_with = torch.tensor(torch.finfo(dtype).tiny, device=device, dtype=dtype)
else: # dtype in _complex_types:
float_dtype = complex_to_corresponding_float_type_map[dtype]
float_eps = torch.tensor(torch.finfo(float_dtype).tiny, device=device, dtype=float_dtype)
replace_with = torch.complex(float_eps, float_eps)
result[result == 0] = replace_with
if dtype in _floating_types + _complex_types:
result.requires_grad = requires_grad
return result