torch.fft.rfftn¶
- torch.fft.rfftn(input, s=None, dim=None, norm=None, *, out=None) Tensor ¶
Computes the N-dimensional discrete Fourier transform of real
input
.The FFT of a real signal is Hermitian-symmetric,
X[i_1, ..., i_n] = conj(X[-i_1, ..., -i_n])
so the fullfftn()
output contains redundant information.rfftn()
instead omits the negative frequencies in the last dimension.Note
Supports torch.half on CUDA with GPU Architecture SM53 or greater. However it only supports powers of 2 signal length in every transformed dimensions.
- Parameters:
input (Tensor) – the input tensor
s (Tuple[int], optional) – Signal size in the transformed dimensions. If given, each dimension
dim[i]
will either be zero-padded or trimmed to the lengths[i]
before computing the real FFT. If a length-1
is specified, no padding is done in that dimension. Default:s = [input.size(d) for d in dim]
dim (Tuple[int], optional) – Dimensions to be transformed. Default: all dimensions, or the last
len(s)
dimensions ifs
is given.norm (str, optional) –
Normalization mode. For the forward transform (
rfftn()
), these correspond to:"forward"
- normalize by1/n
"backward"
- no normalization"ortho"
- normalize by1/sqrt(n)
(making the real FFT orthonormal)
Where
n = prod(s)
is the logical FFT size. Calling the backward transform (irfftn()
) with the same normalization mode will apply an overall normalization of1/n
between the two transforms. This is required to makeirfftn()
the exact inverse.Default is
"backward"
(no normalization).
- Keyword Arguments:
out (Tensor, optional) – the output tensor.
Example
>>> t = torch.rand(10, 10) >>> rfftn = torch.fft.rfftn(t) >>> rfftn.size() torch.Size([10, 6])
Compared against the full output from
fftn()
, we have all elements up to the Nyquist frequency.>>> fftn = torch.fft.fftn(t) >>> torch.testing.assert_close(fftn[..., :6], rfftn, check_stride=False)
The discrete Fourier transform is separable, so
rfftn()
here is equivalent to a combination offft()
andrfft()
:>>> two_ffts = torch.fft.fft(torch.fft.rfft(t, dim=1), dim=0) >>> torch.testing.assert_close(rfftn, two_ffts, check_stride=False)