# flake8: noqa: F403
from .fake_quantize import * # noqa: F403
from .fuse_modules import fuse_modules # noqa: F403
from .fuse_modules import fuse_modules_qat # noqa: F403
from .fuser_method_mappings import * # noqa: F403
from .observer import * # noqa: F403
from .qconfig import * # noqa: F403
from .qconfig_mapping import * # noqa: F403
from .quant_type import * # noqa: F403
from .quantization_mappings import * # type: ignore[no-redef]
from .quantize import * # noqa: F403
from .quantize_jit import * # noqa: F403
from .stubs import * # noqa: F403
__all__ = [
"DeQuantStub" ,
"FakeQuantize" ,
"FakeQuantizeBase" ,
"FixedQParamsFakeQuantize" ,
"FixedQParamsObserver" ,
"FusedMovingAvgObsFakeQuantize" ,
"HistogramObserver" ,
"MatchAllNode" ,
"MinMaxObserver" ,
"MovingAverageMinMaxObserver" ,
"MovingAveragePerChannelMinMaxObserver" ,
"NoopObserver" ,
"ObserverBase" ,
"Pattern" ,
"PerChannelMinMaxObserver" ,
"PlaceholderObserver" ,
"QConfig" ,
"QConfigAny" ,
"QConfigDynamic" ,
"QConfigMapping" ,
"QuantStub" ,
"QuantType" ,
"QuantWrapper" ,
"RecordingObserver" ,
"ReuseInputObserver" ,
"UniformQuantizationObserverBase" ,
"add_quant_dequant" ,
"convert" ,
"convert_dynamic_jit" ,
"convert_jit" ,
"default_affine_fixed_qparams_fake_quant" ,
"default_affine_fixed_qparams_observer" ,
"default_debug_observer" ,
"default_dynamic_fake_quant" ,
"default_dynamic_quant_observer" ,
"default_embedding_fake_quant" ,
"default_embedding_fake_quant_4bit" ,
"default_eval_fn" ,
"default_fake_quant" ,
"default_fixed_qparams_range_0to1_fake_quant" ,
"default_fixed_qparams_range_0to1_observer" ,
"default_fixed_qparams_range_neg1to1_fake_quant" ,
"default_fixed_qparams_range_neg1to1_observer" ,
"default_float_qparams_observer" ,
"default_float_qparams_observer_4bit" ,
"default_fused_act_fake_quant" ,
"default_fused_per_channel_wt_fake_quant" ,
"default_fused_wt_fake_quant" ,
"default_histogram_fake_quant" ,
"default_histogram_observer" ,
"default_observer" ,
"default_per_channel_weight_fake_quant" ,
"default_per_channel_weight_observer" ,
"default_placeholder_observer" ,
"default_reuse_input_observer" ,
"default_symmetric_fixed_qparams_fake_quant" ,
"default_symmetric_fixed_qparams_observer" ,
"default_weight_fake_quant" ,
"default_weight_observer" ,
"disable_fake_quant" ,
"disable_observer" ,
"enable_fake_quant" ,
"enable_observer" ,
"fuse_conv_bn" ,
"fuse_conv_bn_jit" ,
"fuse_conv_bn_relu" ,
"fuse_convtranspose_bn" ,
"fuse_linear_bn" ,
"fuse_modules" ,
"fuse_modules_qat" ,
"fused_per_channel_wt_fake_quant_range_neg_127_to_127" ,
"fused_wt_fake_quant_range_neg_127_to_127" ,
"get_combined_dict" ,
"get_default_compare_output_module_list" ,
"get_default_custom_config_dict" ,
"get_default_dynamic_quant_module_mappings" ,
"get_default_dynamic_sparse_quant_module_mappings" ,
"get_default_float_to_quantized_operator_mappings" ,
"get_default_qat_module_mappings" ,
"get_default_qat_qconfig" ,
"get_default_qat_qconfig_dict" ,
"get_default_qat_qconfig_mapping" ,
"get_default_qconfig" ,
"get_default_qconfig_dict" ,
"get_default_qconfig_mapping" ,
"get_default_qconfig_propagation_list" ,
"get_default_static_quant_module_mappings" ,
"get_default_static_quant_reference_module_mappings" ,
"get_default_static_sparse_quant_module_mappings" ,
"get_dynamic_quant_module_class" ,
"get_embedding_qat_module_mappings" ,
"get_embedding_static_quant_module_mappings" ,
"get_fuser_method" ,
"get_fuser_method_new" ,
"get_observer_state_dict" ,
"get_quantized_operator" ,
"get_static_quant_module_class" ,
"load_observer_state_dict" ,
"no_observer_set" ,
"per_channel_weight_observer_range_neg_127_to_127" ,
"prepare" ,
"prepare_dynamic_jit" ,
"prepare_jit" ,
"prepare_qat" ,
"propagate_qconfig_" ,
"qconfig_equals" ,
"quantize" ,
"quantize_dynamic" ,
"quantize_dynamic_jit" ,
"quantize_jit" ,
"quantize_qat" ,
"script_qconfig" ,
"script_qconfig_dict" ,
"swap_module" ,
"weight_observer_range_neg_127_to_127" ,
]
[docs] def default_eval_fn ( model , calib_data ):
r """
Default evaluation function takes a torch.utils.data.Dataset or a list of
input Tensors and run the model on the dataset
"""
for data , target in calib_data :
model ( data )
Copy to clipboard