Source code for torch.distributed.checkpoint.filesystem
fromabcimportABC,abstractmethodimportqueueimportthreadingimportcollectionsfromdataclassesimportdataclassimportosimportdataclassesimportioimportpicklefromtypingimportList,Union,Dict,castimporttorchfromtorchimportTensorfromtorch.futuresimportFuturefrompathlibimportPathfrom.metadataimport(Metadata,MetadataIndex,)from.storageimport(StorageReader,StorageWriter,WriteResult,)from.plannerimport(LoadItemType,LoadPlanner,LoadPlan,SavePlan,SavePlanner,ReadItem,WriteItem,WriteItemType,)fromtorch.distributed._shard._utilsimportnarrow_tensor_by_index__all__=["FileSystemWriter","SlicedBufferedReader","FileSystemReader",]@dataclassclass_StorageInfo:""" This is the per entry storage info """relative_path:stroffset:intlength:int@dataclassclass_StoragePrefix:prefix:strDEFAULT_SUFFIX=".distcp"def_trim(tensor:torch.Tensor)->torch.Tensor:tensor=tensor.detach().cpu()iftensor._typed_storage()._size()!=tensor.numel():tensor=tensor.clone()returntensordef_result_from_write_item(item:WriteItem,size_in_bytes,storage_data)->WriteResult:returnWriteResult(index=item.index,size_in_bytes=size_in_bytes,storage_data=storage_data)class_TensorLoader(ABC):@abstractmethoddefadd(self,size,obj):passdefstart_loading(self):pass@abstractmethoddefvalues(self):passclass_SerialCpuLoader(_TensorLoader):def__init__(self,resolve_fun):self.resolve_fun=resolve_funself.items=[]defadd(self,size,obj):self.items.append((size,obj))defstart_loading(self):passdefvalues(self):for_,objinself.items:tensor=self.resolve_fun(obj).detach()tensor=tensor.cpu()iftensor.storage().size()!=tensor.numel():tensor=tensor.clone()yield(tensor,obj,)class_OverlappingCpuLoader(_TensorLoader):def__init__(self,resolve_fun,stream=None,inflight_threshhold=1_000_000):self.resolve_fun=resolve_funself.items=[]self.inflight_threshhold=inflight_threshholdself.in_flight_data=0self.current_items:collections.deque=collections.deque()self.idx=0self.started=Falseself.stream=streamortorch.cuda.current_stream()ifself.stream!=torch.cuda.current_stream():self.stream.wait_stream(torch.cuda.current_stream())@propertydef_done(self):returnself.idx>=len(self.items)def_drain(self):drained=[]ifself.in_flight_data>=self.inflight_threshhold:self.stream.synchronize()whileself.in_flight_data>=self.inflight_threshhold:val=self.current_items.popleft()self.in_flight_data-=val[0].numel()*val[0].element_size()drained.append(val)returndraineddef_refill(self):withtorch.cuda.stream(self.stream):while(notself._doneandself.in_flight_data<self.inflight_threshhold):_,obj=self.items[self.idx]self.idx+=1tensor=self.resolve_fun(obj).detach()iftensor.is_cuda:tensor=tensor.to(device="cpu",non_blocking=True)eliftensor.device==torch.device("cpu"):iftensor.storage().size()!=tensor.numel():# this forces the tensor to be both contiguous and with minimal storagetensor=tensor.clone()self.current_items.append((tensor,obj,))self.in_flight_data+=tensor.numel()*tensor.element_size()def_finish(self):assertself._doneiflen(self.current_items)>0:self.stream.synchronize()returnself.current_itemsdefadd(self,size,obj):ifself.started:raiseRuntimeError("cannot add items after loading started")self.items.append((size,obj))defstart_loading(self):ifself.started:returnself.started=Trueself.items.sort(key=lambdax:x[0])self._refill()defvalues(self):self.start_loading()whilenotself._done:drained=self._drain()self._refill()yield fromdrainedyield fromself._finish()def_item_size(item:WriteItem)->int:size=1assertitem.tensor_dataisnotNone# can't use math.prod as PT needs to support older pythonforsinitem.tensor_data.size:size*=sdtype=item.tensor_data.properties.dtypereturnsize*torch._utils._element_size(dtype)def_split_by_size_and_type(bins,items:List[WriteItem])->List[List[WriteItem]]:ifbins==1:return[items]bytes_w=[wiforwiinitemsifwi.type==WriteItemType.BYTE_IO]tensor_w=[wiforwiinitemsifwi.type!=WriteItemType.BYTE_IO]buckets:List[List[WriteItem]]=[[]for_inrange(bins)]bucket_sizes=[0for_inrange(bins)]tensor_w.sort(key=_item_size,reverse=True)fori,wiinenumerate(bytes_w):buckets[i%bins].append(wi)forwiintensor_w:# TODO replace with headqidx=min(enumerate(bucket_sizes),key=lambdax:x[1])[0]buckets[idx].append(wi)bucket_sizes[idx]+=_item_size(wi)returnbucketsdef_write_item(stream,data,write_item,storage_key):offset=stream.tell()ifwrite_item.type==WriteItemType.BYTE_IO:assertisinstance(data,io.BytesIO)stream.write(data.getbuffer())else:assertisinstance(data,torch.Tensor)assertdata.device==torch.device("cpu")torch.save(data,stream)length=stream.tell()-offsetreturn_result_from_write_item(write_item,length,_StorageInfo(storage_key,offset,length))def_write_files_from_queue(file_queue:queue.Queue,result_queue:queue.Queue,planner:SavePlanner,inflight_threshhold:int,use_fsync:bool,):try:whileTrue:file_name,storage_key,write_items=file_queue.get_nowait()loader:_TensorLoaderiftorch.cuda.is_available()andinflight_threshhold>0:loader=_OverlappingCpuLoader(lambdax:planner.resolve_data(x),inflight_threshhold=inflight_threshhold,)else:loader=_SerialCpuLoader(lambdax:planner.resolve_data(x),)tensor_w=[wiforwiinwrite_itemsifwi.type!=WriteItemType.BYTE_IO]forwrite_itemintensor_w:loader.add(_item_size(write_item),write_item)loader.start_loading()bytes_w=[wiforwiinwrite_itemsifwi.type==WriteItemType.BYTE_IO]write_results=[]withopen(file_name,"wb")asstream:forwrite_iteminbytes_w:data=planner.resolve_data(write_item)write_results.append(_write_item(stream,data,write_item,storage_key))fortensor,write_iteminloader.values():assertnottensor.is_cudawrite_results.append(_write_item(stream,tensor,write_item,storage_key))ifuse_fsync:os.fsync(stream.fileno())result_queue.put(write_results)exceptqueue.Empty:pass
[docs]classFileSystemWriter(StorageWriter):""" Basic implementation of StorageWriter using file IO. This implementation makes the following assumptions and simplifications: * The checkpoint path is an empty or non-existing directory. * File creation is atomic The checkpoint consist of one file per write request plus a `.metadata` file with the serialized metadata. """def__init__(self,path:Union[str,os.PathLike],single_file_per_rank:bool=True,sync_files:bool=True,thread_count:int=1,per_thread_copy_ahead:int=10_000_000,)->None:""" Initialize the writer pointing to `path` Args: path: diretory where the checkpoint will be writen to. single_file_per_rank: Produce one file per rank instead of one file per tensor/blob. Default to True. sync_files : force files to be synced to permanent storage. Default to True. thread_count: Number of IO threads to use to write. Default to 1. per_thread_copy_ahead: How many bytes to copy from the GPU ahead of saving then. Default 10Mb. N. B. If sync_files is disabled, there's no guarantee that the checkpoint will be consistent in the case of a failure. """super().__init__()self.path=Path(path)self.single_file_per_rank=single_file_per_rankself.sync_files=sync_filesself.thread_count=thread_countself.per_thread_copy_ahead=per_thread_copy_aheaddefset_up_storage_writer(self,is_coordinator:bool)->None:passdefprepare_local_plan(self,plan:SavePlan)->SavePlan:self.path.mkdir(parents=True,exist_ok=True)returnplandefprepare_global_plan(self,global_plan:List[SavePlan])->List[SavePlan]:new_plans=[dataclasses.replace(plan,storage_data=_StoragePrefix(f"__{i}_"))fori,planinenumerate(global_plan)]returnnew_plansdefwrite_data(self,plan:SavePlan,planner:SavePlanner,)->Future[List[WriteResult]]:storage_plan:_StoragePrefix=plan.storage_datafile_count=0defgen_file():nonlocalfile_countfile_name=f"{storage_plan.prefix}{file_count}{DEFAULT_SUFFIX}"file_count+=1returnfile_namefile_queue:queue.Queue=queue.Queue()ifself.single_file_per_rank:forbucketin_split_by_size_and_type(self.thread_count,plan.items):file_name=gen_file()file_queue.put((self.path/file_name,file_name,bucket))else:foriteminplan.items:file_name=gen_file()file_queue.put((self.path/file_name,file_name,[item]))result_queue:queue.Queue=queue.Queue()threads=[]for_inrange(1,self.thread_count):t=threading.Thread(target=_write_files_from_queue,args=(file_queue,result_queue,planner,self.per_thread_copy_ahead,self.sync_files,),)t.start()threads.append(t)_write_files_from_queue(file_queue=file_queue,result_queue=result_queue,planner=planner,inflight_threshhold=self.per_thread_copy_ahead,use_fsync=self.sync_files,)fortinthreads:t.join()res=[]try:whileTrue:res+=result_queue.get_nowait()exceptqueue.Empty:passfut:Future[List[WriteResult]]=Future()fut.set_result(res)returnfutdeffinish(self,metadata:Metadata,results:List[List[WriteResult]])->None:storage_md=dict()forwr_listinresults:storage_md.update({wr.index:wr.storage_dataforwrinwr_list})metadata.storage_data=storage_mdwith(self.path/".metadata.tmp").open("wb")asmetadata_file:pickle.dump(metadata,metadata_file)os.fsync(metadata_file.fileno())(self.path/".metadata.tmp").rename(self.path/".metadata")
classSlicedBufferedReader(io.BufferedReader):# TODO override read to handle (-1) correctlydef__init__(self,base_stream:io.RawIOBase,offset:int,len:int):super().__init__(base_stream)self.offset=offsetself.len=lenself.seek(0)defseek(self,__offset:int,__whence:int=os.SEEK_SET)->int:if__whence==os.SEEK_SET:__offset=self.offset+__offsetelif__whence==os.SEEK_END:__whence=os.SEEK_SET__offset=(self.offset+self.len)-__offsetreturnsuper().seek(__offset,__whence)deftell(self)->int:returnsuper().tell()-self.offset
[docs]classFileSystemReader(StorageReader):def__init__(self,path:Union[str,os.PathLike])->None:super().__init__()self.path=Path(path)self.storage_data:Dict[MetadataIndex,_StorageInfo]=dict()def_slice_file(self,file,sinfo:_StorageInfo):returnSlicedBufferedReader(io.FileIO(file.fileno(),closefd=False),sinfo.offset,sinfo.length)defread_data(self,plan:LoadPlan,planner:LoadPlanner)->Future[None]:# group requests by fileper_file:Dict[str,List[ReadItem]]=dict()forread_iteminplan.items:item_md=self.storage_data[read_item.storage_index]path=item_md.relative_pathper_file.setdefault(path,[]).append(read_item)forrelative_path,reqsinper_file.items():with(self.path/relative_path).open("rb")asfile:# TODO sort by offset and cache the readingforreqinreqs:item_md=self.storage_data[req.storage_index]file_slice=self._slice_file(file,item_md)ifreq.type==LoadItemType.BYTE_IO:bytes=io.BytesIO(file_slice.read(item_md.length))bytes.seek(0)planner.load_bytes(req,bytes)else:tensor=cast(Tensor,torch.load(file_slice,map_location="cpu"))tensor=narrow_tensor_by_index(tensor,req.storage_offsets,req.lengths)target_tensor=planner.resolve_tensor(req).detach()assert(target_tensor.size()==tensor.size()),f"req {req.storage_index} mismatch sizes {target_tensor.size()} vs {tensor.size()}"target_tensor.copy_(tensor)planner.commit_tensor(req,target_tensor)fut:Future=Future()fut.set_result(None)returnfut# Implementating the abstract function in StorageReaderdefread_metadata(self)->Metadata:with(self.path/".metadata").open("rb")asmetadata_file:returnpickle.load(metadata_file)defset_up_storage_reader(self,metadata:Metadata,is_coordinator:bool)->None:self.storage_data=metadata.storage_dataassertself.storage_dataisnotNonedefprepare_local_plan(self,plan:LoadPlan)->LoadPlan:returnplandefprepare_global_plan(self,global_plan:List[LoadPlan])->List[LoadPlan]:returnglobal_plan
Docs
Access comprehensive developer documentation for PyTorch
To analyze traffic and optimize your experience, we serve cookies on this site. By clicking or navigating, you agree to allow our usage of cookies. As the current maintainers of this site, Facebook’s Cookies Policy applies. Learn more, including about available controls: Cookies Policy.