importgzipimportjsonimportosimporttempfilefromenumimportEnumfromfunctoolsimportpartialfromtypingimportAny,Callable,Dict,Iterable,List,Optional,Tuplefromwarningsimportwarnimporttorchimporttorch.autograd.profilerasproffromtorch._C._profilerimport(_add_execution_graph_observer,_disable_execution_graph_observer,_enable_execution_graph_observer,_ExperimentalConfig,_remove_execution_graph_observer,)fromtorch.autogradimportkineto_available,ProfilerActivityfromtorch.profilerimport_memory_profiler__all__=["supported_activities","ProfilerAction","schedule","tensorboard_trace_handler","profile","ExecutionGraphObserver",]PROFILER_STEP_NAME="ProfilerStep"defsupported_activities():""" Returns a set of supported profiler tracing activities. Note: profiler uses CUPTI library to trace on-device CUDA kernels. In case when CUDA is enabled but CUPTI is not available, passing ``ProfilerActivity.CUDA`` to profiler results in using the legacy CUDA profiling code (same as in the legacy ``torch.autograd.profiler``). This, in turn, results in including CUDA time in the profiler table output, but not in the JSON trace. """returntorch.autograd._supported_activities()
[docs]class_KinetoProfile:"""Low-level profiler wrap the autograd profile Args: activities (iterable): list of activity groups (CPU, CUDA) to use in profiling, supported values: ``torch.profiler.ProfilerActivity.CPU``, ``torch.profiler.ProfilerActivity.CUDA``. Default value: ProfilerActivity.CPU and (when available) ProfilerActivity.CUDA. record_shapes (bool): save information about operator's input shapes. profile_memory (bool): track tensor memory allocation/deallocation. with_stack (bool): record source information (file and line number) for the ops. with_flops (bool): use formula to estimate the FLOPS of specific operators (matrix multiplication and 2D convolution). with_modules (bool): record module hierarchy (including function names) corresponding to the callstack of the op. e.g. If module A's forward call's module B's forward which contains an aten::add op, then aten::add's module hierarchy is A.B Note that this support exist, at the moment, only for TorchScript models and not eager mode models. experimental_config (_ExperimentalConfig) : A set of experimental options used by profiler libraries like Kineto. Note, backward compatibility is not guaranteed. .. note:: This API is experimental and subject to change in the future. Enabling shape and stack tracing results in additional overhead. When record_shapes=True is specified, profiler will temporarily hold references to the tensors; that may further prevent certain optimizations that depend on the reference count and introduce extra tensor copies. """def__init__(self,*,activities:Optional[Iterable[ProfilerActivity]]=None,record_shapes:bool=False,profile_memory:bool=False,with_stack:bool=False,with_flops:bool=False,with_modules:bool=False,experimental_config:Optional[_ExperimentalConfig]=None):self.activities=set(activities)ifactivitieselsesupported_activities()self.record_shapes=record_shapesself.with_flops=with_flopsself.profile_memory=profile_memoryself.with_stack=with_stackself.with_modules=with_modulesself.experimental_config=experimental_configself.profiler:Optional[prof.profile]=Nonedefstart(self):self.prepare_trace()self.start_trace()defstop(self):self.stop_trace()defprepare_trace(self):self.profiler=prof.profile(use_cuda=(ProfilerActivity.CUDAinself.activities),use_cpu=(ProfilerActivity.CPUinself.activities),record_shapes=self.record_shapes,with_flops=self.with_flops,profile_memory=self.profile_memory,with_stack=self.with_stack,with_modules=self.with_modules,use_kineto=True,experimental_config=self.experimental_config,)self.profiler._prepare_trace()defstart_trace(self):assertself.profilerisnotNoneself.profiler._start_trace()ifself.profile_memory:self.add_metadata_json("profile_memory","1")ifself.with_stack:self.add_metadata_json("with_stack","1")ifself.record_shapes:self.add_metadata_json("record_shapes","1")ifself.with_modules:self.add_metadata_json("with_modules","1")ifself.with_flops:self.add_metadata_json("with_flops","1")ifkineto_available():dist_info=self._get_distributed_info()ifdist_info:self.add_metadata_json("distributedInfo",json.dumps(dist_info))defstop_trace(self):assertself.profilerisnotNoneself.profiler.__exit__(None,None,None)
[docs]defexport_chrome_trace(self,path:str):""" Exports the collected trace in Chrome JSON format. """assertself.profilerifpath.endswith('.gz'):fp=tempfile.NamedTemporaryFile('w+t',suffix='.json',delete=False)fp.close()retvalue=self.profiler.export_chrome_trace(fp.name)withopen(fp.name)asfin:withgzip.open(path,'wt')asfout:fout.writelines(fin)os.remove(fp.name)returnretvalueelse:returnself.profiler.export_chrome_trace(path)
[docs]defexport_stacks(self,path:str,metric:str="self_cpu_time_total"):"""Save stack traces in a file in a format suitable for visualization. Args: path (str): save stacks file to this location; metric (str): metric to use: "self_cpu_time_total" or "self_cuda_time_total" .. note:: Example of using FlameGraph tool: - git clone https://github.com/brendangregg/FlameGraph - cd FlameGraph - ./flamegraph.pl --title "CPU time" --countname "us." profiler.stacks > perf_viz.svg """assertself.profilerreturnself.profiler.export_stacks(path,metric)
[docs]defkey_averages(self,group_by_input_shape:bool=False,group_by_stack_n:int=0):"""Averages events, grouping them by operator name and (optionally) input shapes and stack. .. note:: To use shape/stack functionality make sure to set record_shapes/with_stack when creating profiler context manager. """assertself.profilerreturnself.profiler.key_averages(group_by_input_shape,group_by_stack_n)
[docs]defevents(self):""" Returns the list of unaggregated profiler events, to be used in the trace callback or after the profiling is finished """assertself.profilerreturnself.profiler.function_events
[docs]defadd_metadata(self,key:str,value:str):""" Adds a user defined metadata with a string key and a string value into the trace file """wrapped_value="\""+value.replace('"','\\"')+"\""torch.autograd._add_metadata_json(key,wrapped_value)
[docs]defadd_metadata_json(self,key:str,value:str):""" Adds a user defined metadata with a string key and a valid json value into the trace file """torch.autograd._add_metadata_json(key,value)
def_get_distributed_info(self):importtorch.distributedasdistifnotdist.is_available()ornotdist.is_initialized():returnNonereturn{"backend":dist.get_backend(),"rank":dist.get_rank(),"world_size":dist.get_world_size()}def_memory_profile(self)->_memory_profiler.MemoryProfile:required=("record_shapes","profile_memory","with_stack")missing=[f"{i}=True"foriinrequiredifnotgetattr(self,i)]ifmissing:raiseValueError(f"{', '.join(missing)} required for memory profiling.")assertself.profilerisnotNoneandself.profiler.kineto_resultsisnotNonereturn_memory_profiler.MemoryProfile(self.profiler.kineto_results)
[docs]classProfilerAction(Enum):""" Profiler actions that can be taken at the specified intervals """NONE=0WARMUP=1RECORD=2RECORD_AND_SAVE=3
[docs]defschedule(*,wait:int,warmup:int,active:int,repeat:int=0,skip_first:int=0)->Callable:""" Returns a callable that can be used as profiler ``schedule`` argument. The profiler will skip the first ``skip_first`` steps, then wait for ``wait`` steps, then do the warmup for the next ``warmup`` steps, then do the active recording for the next ``active`` steps and then repeat the cycle starting with ``wait`` steps. The optional number of cycles is specified with the ``repeat`` parameter, the zero value means that the cycles will continue until the profiling is finished. """defschedule_fn(step:int)->ProfilerAction:assertstep>=0ifstep<skip_first:returnProfilerAction.NONEelse:step-=skip_firstnum_steps=wait+warmup+activeifrepeat>0andstep/num_steps>=repeat:returnProfilerAction.NONEmod_step=step%num_stepsifmod_step<wait:returnProfilerAction.NONEelifmod_step<wait+warmup:returnProfilerAction.WARMUPelse:returnProfilerAction.RECORDifmod_step<num_steps-1 \
elseProfilerAction.RECORD_AND_SAVEassertwait>=0andwarmup>=0andactive>0and \
repeat>=0andskip_first>=0,"Invalid profiler schedule arguments"ifwarmup==0:warn("Profiler won't be using warmup, this can skew profiler results")returnschedule_fn
def_default_schedule_fn(_:int)->ProfilerAction:""" Default profiler behavior - immediately starts recording the events, keeps doing it on every profiler step. """returnProfilerAction.RECORD
[docs]deftensorboard_trace_handler(dir_name:str,worker_name:Optional[str]=None,use_gzip:bool=False):""" Outputs tracing files to directory of ``dir_name``, then that directory can be directly delivered to tensorboard as logdir. ``worker_name`` should be unique for each worker in distributed scenario, it will be set to '[hostname]_[pid]' by default. """importosimportsocketimporttimedefhandler_fn(prof)->None:nonlocalworker_nameifnotos.path.isdir(dir_name):try:os.makedirs(dir_name,exist_ok=True)exceptExceptionase:raiseRuntimeError("Can't create directory: "+dir_name)fromeifnotworker_name:worker_name="{}_{}".format(socket.gethostname(),str(os.getpid()))file_name="{}.{}.pt.trace.json".format(worker_name,int(time.time()*1000))ifuse_gzip:file_name=file_name+'.gz'prof.export_chrome_trace(os.path.join(dir_name,file_name))returnhandler_fn
[docs]classprofile(_KinetoProfile):"""Profiler context manager. Args: activities (iterable): list of activity groups (CPU, CUDA) to use in profiling, supported values: ``torch.profiler.ProfilerActivity.CPU``, ``torch.profiler.ProfilerActivity.CUDA``. Default value: ProfilerActivity.CPU and (when available) ProfilerActivity.CUDA. schedule (Callable): callable that takes step (int) as a single parameter and returns ``ProfilerAction`` value that specifies the profiler action to perform at each step. on_trace_ready (Callable): callable that is called at each step when ``schedule`` returns ``ProfilerAction.RECORD_AND_SAVE`` during the profiling. record_shapes (bool): save information about operator's input shapes. profile_memory (bool): track tensor memory allocation/deallocation. with_stack (bool): record source information (file and line number) for the ops. with_flops (bool): use formula to estimate the FLOPs (floating point operations) of specific operators (matrix multiplication and 2D convolution). with_modules (bool): record module hierarchy (including function names) corresponding to the callstack of the op. e.g. If module A's forward call's module B's forward which contains an aten::add op, then aten::add's module hierarchy is A.B Note that this support exist, at the moment, only for TorchScript models and not eager mode models. experimental_config (_ExperimentalConfig) : A set of experimental options used for Kineto library features. Note, backward compatibility is not guaranteed. use_cuda (bool): .. deprecated:: 1.8.1 use ``activities`` instead. .. note:: Use :func:`~torch.profiler.schedule` to generate the callable schedule. Non-default schedules are useful when profiling long training jobs and allow the user to obtain multiple traces at the different iterations of the training process. The default schedule simply records all the events continuously for the duration of the context manager. .. note:: Use :func:`~torch.profiler.tensorboard_trace_handler` to generate result files for TensorBoard: ``on_trace_ready=torch.profiler.tensorboard_trace_handler(dir_name)`` After profiling, result files can be found in the specified directory. Use the command: ``tensorboard --logdir dir_name`` to see the results in TensorBoard. For more information, see `PyTorch Profiler TensorBoard Plugin <https://github.com/pytorch/kineto/tree/master/tb_plugin>`__ .. note:: Enabling shape and stack tracing results in additional overhead. When record_shapes=True is specified, profiler will temporarily hold references to the tensors; that may further prevent certain optimizations that depend on the reference count and introduce extra tensor copies. Examples: .. code-block:: python with torch.profiler.profile( activities=[ torch.profiler.ProfilerActivity.CPU, torch.profiler.ProfilerActivity.CUDA, ] ) as p: code_to_profile() print(p.key_averages().table( sort_by="self_cuda_time_total", row_limit=-1)) Using the profiler's ``schedule``, ``on_trace_ready`` and ``step`` functions: .. code-block:: python # Non-default profiler schedule allows user to turn profiler on and off # on different iterations of the training loop; # trace_handler is called every time a new trace becomes available def trace_handler(prof): print(prof.key_averages().table( sort_by="self_cuda_time_total", row_limit=-1)) # prof.export_chrome_trace("/tmp/test_trace_" + str(prof.step_num) + ".json") with torch.profiler.profile( activities=[ torch.profiler.ProfilerActivity.CPU, torch.profiler.ProfilerActivity.CUDA, ], # In this example with wait=1, warmup=1, active=2, repeat=1, # profiler will skip the first step/iteration, # start warming up on the second, record # the third and the forth iterations, # after which the trace will become available # and on_trace_ready (when set) is called; # the cycle repeats starting with the next step schedule=torch.profiler.schedule( wait=1, warmup=1, active=2, repeat=1), on_trace_ready=trace_handler # on_trace_ready=torch.profiler.tensorboard_trace_handler('./log') # used when outputting for tensorboard ) as p: for iter in range(N): code_iteration_to_profile(iter) # send a signal to the profiler that the next iteration has started p.step() """def__init__(self,*,activities:Optional[Iterable[ProfilerActivity]]=None,schedule:Optional[Callable[[int],ProfilerAction]]=None,on_trace_ready:Optional[Callable[...,Any]]=None,record_shapes:bool=False,profile_memory:bool=False,with_stack:bool=False,with_flops:bool=False,with_modules:bool=False,experimental_config:Optional[_ExperimentalConfig]=None,# deprecated:use_cuda:Optional[bool]=None):activities_set=set(activities)ifactivitieselsesupported_activities()ifuse_cudaisnotNone:warn("use_cuda is deprecated, use activities argument instead")ifuse_cuda:activities_set.add(ProfilerActivity.CUDA)elifProfilerActivity.CUDAinactivities_set:activities_set.remove(ProfilerActivity.CUDA)assertlen(activities_set)>0,"No valid profiler activities found"super().__init__(activities=activities,record_shapes=record_shapes,profile_memory=profile_memory,with_stack=with_stack,with_flops=with_flops,with_modules=with_modules,experimental_config=experimental_config,)ifschedule:self.schedule=schedule# add step markers into the trace and table viewself.record_steps=Trueelse:self.schedule=_default_schedule_fnself.record_steps=Falseself.on_trace_ready=on_trace_readyself.step_num=0self.current_action=self.schedule(self.step_num)self.step_rec_fn:Optional[prof.record_function]=Noneself.action_map:Dict[Tuple[ProfilerAction,Optional[ProfilerAction]],List[Any]]={# key is (prev_action, current_action), value is action list corresponding to the state pair.(ProfilerAction.NONE,ProfilerAction.NONE):[],(ProfilerAction.NONE,ProfilerAction.WARMUP):[self.prepare_trace],(ProfilerAction.NONE,ProfilerAction.RECORD):[self.prepare_trace,self.start_trace],(ProfilerAction.NONE,ProfilerAction.RECORD_AND_SAVE):[self.prepare_trace,self.start_trace],(ProfilerAction.WARMUP,ProfilerAction.NONE):[partial(warn,"Incorrect schedule: WARMUP followed by NONE"),self.start_trace,self.stop_trace],(ProfilerAction.WARMUP,ProfilerAction.WARMUP):[],(ProfilerAction.WARMUP,ProfilerAction.RECORD):[self.start_trace],(ProfilerAction.WARMUP,ProfilerAction.RECORD_AND_SAVE):[self.start_trace],(ProfilerAction.RECORD,ProfilerAction.NONE):[partial(warn,"Incorrect schedule: RECORD followed by NONE"),self.stop_trace],(ProfilerAction.RECORD,ProfilerAction.WARMUP):[partial(warn,"Incorrect schedule: RECORD followed by WARMUP"),self.stop_trace],(ProfilerAction.RECORD,ProfilerAction.RECORD):[],(ProfilerAction.RECORD,ProfilerAction.RECORD_AND_SAVE):[],(ProfilerAction.RECORD_AND_SAVE,ProfilerAction.NONE):[self.stop_trace,self._trace_ready],(ProfilerAction.RECORD_AND_SAVE,ProfilerAction.WARMUP):[self.stop_trace,self._trace_ready,self.prepare_trace],(ProfilerAction.RECORD_AND_SAVE,ProfilerAction.RECORD):[self.stop_trace,self._trace_ready,self.prepare_trace,self.start_trace],(ProfilerAction.RECORD_AND_SAVE,ProfilerAction.RECORD_AND_SAVE):[self.stop_trace,self._trace_ready,self.prepare_trace,self.start_trace],# used for exit action(ProfilerAction.WARMUP,None):[self.start_trace,self.stop_trace],(ProfilerAction.RECORD,None):[self.stop_trace,self._trace_ready],(ProfilerAction.RECORD_AND_SAVE,None):[self.stop_trace,self._trace_ready]}# Start tracking increments to profiler step, this will be used# by Kinetoprof.KinetoStepTracker.init_step_count(PROFILER_STEP_NAME)def__enter__(self):self.start()returnselfdef__exit__(self,exc_type,exc_val,exc_tb):self.stop()prof.KinetoStepTracker.erase_step_count(PROFILER_STEP_NAME)defstart(self):self._transit_action(ProfilerAction.NONE,self.current_action)ifself.record_steps:self.step_rec_fn=prof.record_function("ProfilerStep#"+str(self.step_num))self.step_rec_fn.__enter__()defstop(self):ifself.record_stepsandself.step_rec_fn:self.step_rec_fn.__exit__(None,None,None)self._transit_action(self.current_action,None)
[docs]defstep(self):""" Signals the profiler that the next profiling step has started. """ifself.record_stepsandself.step_rec_fn:self.step_rec_fn.__exit__(None,None,None)prev_action=self.current_actioncur_step=self.step_numself.step_num+=1self.current_action=self.schedule(self.step_num)self._transit_action(prev_action,self.current_action)prof.KinetoStepTracker.increment_step(PROFILER_STEP_NAME)ifself.record_steps:self.step_rec_fn=prof.record_function("ProfilerStep#"+str(cur_step))self.step_rec_fn.__enter__()
classExecutionGraphObserver:"""Execution Graph Observer Each process can have a single ExecutionGraphObserver instance. The observer can be added to record function callbacks via calling register_callback() explicitly. Without calling unregister_callback(), repeated calls to register_callback() will not add additional observers to record function callbacks. Once an ExecutionGraphObserver is created, the start() and stop() methods control when the event data is recorded. Deleting or calling unregister_callback() will remove the observer from the record function callbacks, finalize the output file, and will stop incurring any overheads. """def__init__(self):""" Initializes the default states. """self._registered=Falseself._execution_graph_running=Falsedef__del__(self):""" Calls unregister_callback() to make sure to finalize outputs. """self.unregister_callback()defregister_callback(self,output_file_path:str):""" Adds EG observer to record function callbacks. The the data will be written to output_file_path. """ifnotself._registered:self._output_file_path=output_file_pathself._registered=_add_execution_graph_observer(output_file_path)defunregister_callback(self):""" Removes EG observer from record function callbacks. """ifself._registered:self.stop()_remove_execution_graph_observer()self._registered=False@propertydefis_registered(self):""" Return if the execution graph observer is registered. """returnself._registereddefstart(self):""" Starts to capture. """ifself._registeredandnotself._execution_graph_running:_enable_execution_graph_observer()self._execution_graph_running=Truedefstop(self):""" Stops to capture. """ifself._execution_graph_running:_disable_execution_graph_observer()self._execution_graph_running=Falsedefget_output_file_path(self)->str:""" Returns the output file name. """ifself.is_registered:returnself._output_file_pathelse:raiseRuntimeError("A callback to the EG profiler needs to be registered ""first before getting the output file path")
Docs
Access comprehensive developer documentation for PyTorch
To analyze traffic and optimize your experience, we serve cookies on this site. By clicking or navigating, you agree to allow our usage of cookies. As the current maintainers of this site, Facebook’s Cookies Policy applies. Learn more, including about available controls: Cookies Policy.